
Abstract Classes and
Interfaces

Abstract Classes

• An abstract class in a class hierarchy represents a generic concept
• Common elements in a hierarchy that are too generic to instantiate

• Cannot be instantiated

• abstract on the class header:

public abstract class Product

{

// contents

}

Abstract Classes

• abstract classes typically have:
• abstract methods with no definitions (like an interface)

• probably also non-abstract methods with full definitions

• Does not have to contain abstract methods -- simply declaring it as
abstract makes it so

• The child of an abstract class must override the abstract methods of
the parent, or it too will be considered abstract

Abstract Classes

abstract class A1 {

abstract void m1();

abstract String m2();

}

class C1 extends A1 {

void m1() { System.out.println(“C1-m1”); }

String m2() { return “C1-m2”; }

}

abstract C2 extends A1 {

void m1() { System.out.println(“C2-m1”); }

}

 C2 must be abstract, because it does not implement the abstract
method m2.

Abstract Classes

• Abstract methods cannot be defined as final or static
• final cannot be overridden (contradiction!)

• static could be invoked by just using the name of the class – can’t invoke it
with no implementation

Interfaces

• A Java interface is a collection of abstract methods and constants
• An abstract method is a method header without a method body

• abstract - but because all methods in an interface are abstract, usually it is
left off

• An interface establishes a set of methods that a class will implement
• Similar to abstract class but all methods are abstract (and all properties are

constant)

Interfaces

interface I1 { Although we do not write here, it is assumed

that CONST1 is declared as a constant (with

int CONST1=5; keywords public, final and static)

void m1(); Although we do not write here, it is assumed

} that m1 is declared with keywords public

and abstract.

Interface methods are public by default

Interfaces

public interface Doable

{

public void doThis();

public int doThat();

public void doThis2 (float value, char ch);

public boolean doTheOther (int num);

}

interface is a reserved word

None of the methods in

an interface are given

a definition (body)

A semicolon immediately

follows each method header

Interfaces

• Defines similarities that multiple classes share
• to tie elements of several classes together - without having an inheritance

relationship, so still no multiple inheritance

• separate design from coding

• An interface cannot be instantiated

• A class implements an interface by:
• stating so in the class header

• Implementing all abstract methods in the interface, plus maybe some others

Interfaces
public class CanDo implements Doable

{

public void doThis ()

{

// whatever

}

public void doThat ()

{

// whatever

}

// etc.

}

implements is a

reserved word

Each method listed

in Doable is

given a definition

Implementing Interfaces (cont.)

• An interface can be implemented by multiple classes.

• Each implementing class can provide their own unique versions of the method
definitions.

interface I1 {

void m1() ;

}

class C1 implements I1 {

public void m1() { System.out.println(“Implementation in C1”); }

}

class C2 implements I1 {

public void m1() { System.out.println(“Implementation in C2”); }

}

Interfaces

• A class can implement multiple interfaces

• The interfaces are listed in the implements clause

• The class must implement all methods in all interfaces listed in the
header

class ManyThings implements interface1, interface2

{

// all methods of both interfaces

}

Implementing More Than One Interface

interface I1 {

void m1();

}

interface I2 {

void m2() ; C must implement all methods in I1 and I2.

void m3() ;

}

class C implements I1, I2 {

public void m1() { System.out.println(“C-m1”); }

public void m2() { System.out.println(“C-m2”); }

public void m3() { System.out.println(“C-m3”); }

}

Resolving Name Conflicts Among Interfaces

• Since a class may implement more than one interface, the names in
those interfaces may collide.

• To solve name collisions, Java use a simple mechanism.

• Two methods that have the same name will be treated as follows in
Java:
• If they are different signature, they are considered to be overloaded.

• If they have the same signature and the same return type, they are
considered to be the same method and they collapse into one.

• If they have the same signature and the different return types, a compilation
error will occur.

Resolving Name Conflicts Among Interfaces

interface I1 {

void m1();

void m2();

void m3();

}

interface I2 {

void m1(int a); There will be a compilation error for m3.

void m2();

int m3();

}

class C implements I1, I2 {

public void m1() { … } // implementation of m1 in I1

public void m1(int x) { … } // implementation of m1 in I2

public void m2() { … } // implementation of m2 in I1 and I2

}

Inheritance Relation Among Interfaces

• Same as classes, interfaces can hold inheritance relation among them

interface I2 extends I1 { … }

• Now, I2 contains all abstract methods of I1 plus its own abstract
methods.

• The classes implementing I2 must implement all methods in I1 and
I2.

Interfaces as Data Types

• Interfaces (same as classes) can be used as data types.

• Different from classes: We cannot create an instance of an interface.

interface I1 { … }

class C1 implements I1 { … }

class C2 extends C1 { … }

// a variable can be declared as type I1

I1 x;

• A variable declared as I1, can store objects of C1 and C2.
• More later…

Interfaces

• In addition to (or instead of) abstract methods, an interface can
contain constants

• When a class implements an interface, it gains access to all its
constants

• A class that implements an interface can implement other methods
as well

• See Complexity.java

• See Question.java

• See MiniQuiz.java

//**

// Complexity.java Author: Lewis/Loftus

//

// Represents the interface for an object that can be assigned an

// explicit complexity.

//**

public interface Complexity

{

public void setComplexity (int complexity);

public int getComplexity();

}

//**

// Question.java Author: Lewis/Loftus

//

// Represents a question (and its answer).

//**

public class Question implements Complexity

{

private String question, answer;

private int complexityLevel;

//---

// Constructor: Sets up the question with a default complexity.

//---

public Question (String query, String result)

{

question = query;

answer = result;

complexityLevel = 1;

}

continue

continue

//---

// Sets the complexity level for this question.

//---

public void setComplexity (int level)

{

complexityLevel = level;

}

//---

// Returns the complexity level for this question.

//---

public int getComplexity()

{

return complexityLevel;

}

//---

// Returns the question.

//---

public String getQuestion()

{

return question;

}

continue

continue

//---

// Returns the answer to this question.

//---

public String getAnswer()

{

return answer;

}

//---

// Returns true if the candidate answer matches the answer.

//---

public boolean answerCorrect (String candidateAnswer)

{

return answer.equals(candidateAnswer);

}

//---

// Returns this question (and its answer) as a string.

//---

public String toString()

{

return question + "\n" + answer;

}

}

//**

// MiniQuiz.java Author: Lewis/Loftus

//

// Demonstrates the use of a class that implements an interface.

//**

import java.util.Scanner;

public class MiniQuiz

{

//---

// Presents a short quiz.

//---

public static void main (String[] args)

{

Question q1, q2;

String possible;

Scanner scan = new Scanner (System.in);

q1 = new Question ("What is the capital of Jamaica?",

"Kingston");

q1.setComplexity (4);

q2 = new Question ("Which is worse, ignorance or apathy?",

"I don't know and I don't care");

q2.setComplexity (10);

continue

continue

System.out.print (q1.getQuestion());

System.out.println (" (Level: " + q1.getComplexity() + ")");

possible = scan.nextLine();

if (q1.answerCorrect(possible))

System.out.println ("Correct");

else

System.out.println ("No, the answer is " + q1.getAnswer());

System.out.println();

System.out.print (q2.getQuestion());

System.out.println (" (Level: " + q2.getComplexity() + ")");

possible = scan.nextLine();

if (q2.answerCorrect(possible))

System.out.println ("Correct");

else

System.out.println ("No, the answer is " + q2.getAnswer());

}

}

continue

System.out.print (q1.getQuestion());

System.out.println (" (Level: " + q1.getComplexity() + ")");

possible = scan.nextLine();

if (q1.answerCorrect(possible))

System.out.println ("Correct");

else

System.out.println ("No, the answer is " + q1.getAnswer());

System.out.println();

System.out.print (q2.getQuestion());

System.out.println (" (Level: " + q2.getComplexity() + ")");

possible = scan.nextLine();

if (q2.answerCorrect(possible))

System.out.println ("Correct");

else

System.out.println ("No, the answer is " + q2.getAnswer());

}

}

Sample Run

What is the capital of Jamaica? (Level: 4)

Kingston

Correct

Which is worse, ignorance or apathy? (Level: 10)

apathy

No, the answer is I don't know and I don't care

Copyright © 2014 by John Wiley & Sons. All rights reserved. 26

Example

 Example: a method to compute the average of an array of

Objects

• The algorithm for computing the average is the same in all cases

• Details of measurement differ

 Goal: write one method that provides this service.

 We can't call getBalance in one case and getArea in

another.

 Solution: all object who want this service must agree on a

getMeasure method

• BankAccount's getMeasure will return the balance

• Country's getMeasure will return the area

 Now we implement a single average method that

computes the sum:

sum = sum + obj.getMeasure();

Copyright © 2014 by John Wiley & Sons. All rights reserved. 27

Defining an Interface Type

 Problem: we need to declare a type for obj

 Need to invent a new type that describes any class whose

objects can be measured.

 An interface type is used to specify required operations

(like getMeasure):

public interface Measurable

{

double getMeasure();

}

 A Java interface type declares methods but does not

provide their implementations.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 28

Syntax 8.1 Declaring an Interface

Copyright © 2014 by John Wiley & Sons. All rights reserved. 29

Defining an Interface Type

 Implementing a reusable average method:

public static double average(Measurable[] objects)

{

double sum = 0;

for (Measurable obj : objects)

{

sum = sum + obj.getMeasure();

}

if (objects.length > 0) { return sum / objects.length; }

else { return 0; }

}

 This method is can be used for objects of any class that

conforms to the Measurable type.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 30

Implementing an Interface Type

 Use implements reserved word to indicate that a class

implements an interface type:

public class BankAccount implements Measurable

{

…

public double getMeasure()

{

return balance;

}

}

 BankAccount objects are instances of the Measurable

type:

Measurable obj = new BankAccount(); // OK

Copyright © 2014 by John Wiley & Sons. All rights reserved. 31

Implementing an Interface Type

 A variable of type Measurable holds a reference to an

object of some class that implements the Measurable

interface.

 Country class can also implement the Measurable

interface:

public class Country implements Measurable

{

public double getMeasure()

{

return area;

}

. . .

}

 Use interface types to make code more reusable.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 32

Implementing an Interface Type

 Put the average method in a class - say Data

Figure 1 UML Diagram of the Data Class and the Classes

that Implement the Measurable Interface

 Data class is decoupled from the BankAccount and

Country classes.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 33

section_1/Data.java

1 public class Data

2 {

3 /**

4 Computes the average of the measures of the given objects.

5 @param objects an array of Measurable objects

6 @return the average of the measures

7 */

8 public static double average(Measurable[] objects)

9 {

10 double sum = 0;

11 for (Measurable obj : objects)

12 {

13 sum = sum + obj.getMeasure();

14 }

15 if (objects.length > 0) { return sum / objects.length; }

16 else { return 0; }

17 }

18 }

code/section_1/Data.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 34

section_1/MeasurableTester.java

1 /**

2 This program demonstrates the measurable BankAccount and Country classes.

3 */

4 public class MeasurableTester

5 {

6 public static void main(String[] args)

7 {

8 Measurable[] accounts = new Measurable[3];

9 accounts[0] = new BankAccount(0);

10 accounts[1] = new BankAccount(10000);

11 accounts[2] = new BankAccount(2000);

12

13 double averageBalance = Data.average(accounts);

14 System.out.println("Average balance: " + averageBalance);

15 System.out.println("Expected: 4000");

16

17 Measurable[] countries = new Measurable[3];

18 countries[0] = new Country("Uruguay", 176220);

19 countries[1] = new Country("Thailand", 513120);

20 countries[2] = new Country("Belgium", 30510);

21

22 double averageArea = Data.average(countries);

23 System.out.println("Average area: " + averageArea);

24 System.out.println("Expected: 239950");

25 }

26 }

Continued

code/section_1/MeasurableTester.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 35

section_1/MeasurableTester.java

Program Run:

Average balance: 4000

Expected: 4000

Average area: 239950

Expected: 239950

code/section_1/MeasurableTester.java

Copyright © 2014 by John Wiley & Sons. All rights reserved. 36

Self Check 8.1

Answer: It must implement the Measurable interface,

and its getMeasure method must return the salary.

Suppose you want to use the average method to find the

average salary of an array of Employee objects. What

condition must the Employee class fulfill?

Copyright © 2014 by John Wiley & Sons. All rights reserved. 37

Self Check 8.4

Answer: Measurable is not a class. You cannot

construct objects of type Measurable.

What is wrong with this code?

Measurable meas = new Measurable();

System.out.println(meas.getMeasure());

Copyright © 2014 by John Wiley & Sons. All rights reserved. 38

Self Check 8.5

Answer: The variable meas is of type Measurable, and

that type has no getName method.

What is wrong with this code?

Measurable meas = new Country("Uruguay", 176220);

System.out.println(meas.getName());

Interfaces

• The Java standard class library contains many helpful interfaces

• The Comparable interface contains one abstract method called
compareTo, which is used to compare two objects

• We discussed the compareTo method of the String class before

• The String class implements Comparable, giving us the ability to put
strings in lexicographic order

The Comparable Interface

• Any class can implement Comparable to provide a mechanism for
comparing objects of that type

if (obj1.compareTo(obj2) < 0)

System.out.println ("obj1 is less than obj2");

• The value returned from compareTo should be negative if

obj1 is less that obj2, 0 if they are equal, and positive if

obj1 is greater than obj2

• When a programmer designs a class that implements the
Comparable interface, it should follow this intent

The Comparable Interface

• It's up to the programmer to determine what makes one object less
than another

• For example, you may define the compareTo method of an Employee
class to order employees by name (alphabetically) or by employee
number

• The implementation of the method can be as straightforward or as
complex as needed for the situation

Copyright © 2014 by John Wiley & Sons. All rights reserved. 42

The Comparable Interface

 BankAccount class' implementation of Comparable:

public class BankAccount implements Comparable

{

. . .

public int compareTo(Object otherObject)

{

BankAccount other = (BankAccount) otherObject;

if (balance < other.balance) { return -1; }

if (balance > other.balance) { return 1; }

return 0;

}

. . .

}

 compareTo method has a parameter of reference type

Object

 To get a BankAccount reference:

BankAccount other = (BankAccount) otherObject;

Copyright © 2014 by John Wiley & Sons. All rights reserved. 43

The Comparable Interface

 Because the BankAccount class implements the

Comparable interface, you can sort an array of bank

accounts with the Arrays.sort method:

BankAccount[] accounts = new BankAccount[3];

accounts[0] = new BankAccount(10000);

accounts[1] = new BankAccount(0);

accounts[2] = new BankAccount(2000);

Arrays.sort(accounts);

 Now the accounts array is sorted by increasing balance.

 The compareTo method checks whether another object is

larger or smaller.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 44

Self Check 8.14

Answer:

public static Comparable max(Comparable a,

Comparable b)

{

if (a.compareTo(b) > 0) { return a; }

else { return b; }

}

Write a method max that finds the larger of any two

Comparable objects.

Copyright © 2014 by John Wiley & Sons. All rights reserved. 45

Self Check 8.15

Answer:

BankAccount larger =

(BankAccount) max(first, second);

System.out.println(larger.getBalance());

Note that the result must be cast from Comparable to

BankAccount so that you can invoke the getBalance

method.

Write a call to the method of Self Check 14 that computes

the larger of two bank accounts, then prints its balance.

The Iterator Interface

• As we discussed, an iterator is an object that provides a means of
processing a collection of objects one at a time

• An iterator is created formally by implementing the Iterator
interface, which contains three methods

• The hasNext method returns a boolean result – true if there are
items left to process

• The next method returns the next object in the iteration

• The remove method removes the object most recently returned by
the next method

The Iterator Interface

• By implementing the Iterator interface, a class formally establishes
that objects of that type are iterators

• The programmer must decide how best to implement the iterator
functions

• Once established, the for-each version of the for loop can be used to
process the items in the iterator

When to use Abstract Methods &
Abstract Class?

• Abstract methods are usually declared where two or more subclasses
are expected to fulfill a similar role in different ways through
different implementations
• These subclasses extend the same Abstract class and provide different

implementations for the abstract methods

• Use abstract classes to define broad types of behaviors at the top of
an object-oriented programming class hierarchy, and use its
subclasses to provide implementation details of the abstract class.

Why do we use Interfaces?
Reason #1

• To reveal an object's programming interface (functionality of the
object) without revealing its implementation
• This is the concept of encapsulation

• The implementation can change without affecting the caller of the interface

• The caller does not need the implementation at the compile time
• It needs only the interface at the compile time

• During runtime, actual object instance is associated with the interface type

Why do we use Interfaces?
Reason #2

• To have unrelated classes implement similar methods (behaviors)
• One class is not a sub-class of another

• Example:
• Class Line and class MyInteger

• They are not related through inheritance

• You want both to implement comparison methods

• checkIsGreater(Object x, Object y)

• checkIsLess(Object x, Object y)

• checkIsEqual(Object x, Object y)

• Define Comparison interface which has the three abstract methods above

Why do we use Interfaces?
Reason #3

• To model multiple inheritance
• A class can implement multiple interfaces while it can extend only one class

Interface vs. Abstract Class

• All methods of an Interface are abstract methods while some
methods of an Abstract class are abstract methods
• Abstract methods of abstract class have abstract modifier

• An interface can only define constants while abstract class can have
fields

• Interfaces have no direct inherited relationship with any particular
class, they are defined independently
• Interfaces themselves have inheritance relationship among themselves

Problem of Rewriting an Existing
Interface

• Consider an interface that you have developed called DoIt:
public interface DoIt {

void doSomething(int i, double x);

int doSomethingElse(String s);

}

• Suppose that, at a later time, you want to add a third method to DoIt,
so that the interface now becomes:

public interface DoIt {

void doSomething(int i, double x);

int doSomethingElse(String s);

boolean didItWork(int i, double x, String s);

}

If you make this change, all classes that

implement the old DoIt interface will break

because they don't implement all methods of

the interface anymore

Solution of Rewriting an Existing
Interface

• Create more interfaces later

• For example, you could create a DoItPlus interface that extends DoIt:
public interface DoItPlus extends DoIt {

boolean didItWork(int i, double x, String s);

}

• Now users of your code can choose to continue to use the old
interface or to upgrade to the new interface

When to use an Abstract Class
over Interface?

• For non-abstract methods, you want to use them when you want to
provide common implementation code for all sub-classes
• Reducing the duplication

• For abstract methods, the motivation is the same with the ones in
the interface – to impose a common behavior for all sub-classes
without dictating how to implement it

• Remember a concrete can extend only one super class whether that
super class is in the form of concrete class or abstract class

